

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

SYLLABUS

1. Data about the program of study

[
1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and Information
1.2 Faculty	Technology
1.3 Department	Communications
1.4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field of Study	Technologies
1.5 Cycle of study	Master of Science
	Telecommunications / Master
1 6 Dragram of study / Qualification	Multimedia Technologies / Master
1.6 Program of study / Qualification	Artificial Intelligence and Signal Processing in Electronics and
	Telecommunications / Master
1.7 Form of education	Full time
1.8 Subject code	TC-E17.40

2. Data about the subject

•							
2.1 Subject name		Al-Bas	Al-Based Cybersecurity				
Theore			retical area				
2.2 Subject area	Metho	Methodological area					
-			tic area				
2.3 Course responsible			Associate Professor Daniel ZINCA, Ph.D.				
			Da	<u>Daniel.Zinca@com.utcluj.ro</u>			
2.4 Teacher in charge with seminar /			Associate Professor Daniel ZINCA, Ph.D.				
laboratory / project			Daniel.Zinca@com.utcluj.ro				
2.5 Year of study 2 2.6 Semeste		er	1	2.7 Assessment	Ε	2.8 Subject category	DA/DI

3. Estimated total time

3.1 Number of hours per week	3	of which:	3.2 course	1	3.3 laboratory	2
3.4 To Total hours in the curriculum	42	of which:	3.5 course	14	3.6 laboratory	28
Distribution of time						hours
Manual, lecture material and notes, bibliography					20	
Supplementary study in the library, online specialized platforms and in the field					12	
Preparation for seminars / laboratories, homework, reports, portfolios and essays					20	
Tutoring					3	
Exams and tests					3	
Other activities:						

3.7 Total hours of individual study	58
3.8 Total hours per semester	100
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 curriculum	N. A.
4.2 competence	N. A.

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	Laboratory, Cluj-Napoca

6. Specific competences

<u>. speeme eo</u>	mpeterioes
Professional competences	C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation and electronic technology C2. Applying the basic methods for the acquisition and processing of signals C3. Application of the basic knowledge, concepts and methods regarding the architecture of computer systems, microprocessors, microcontrollers, languages and programming techniques C4. Design, implementation and operation of data, voice, video and multimedia services. This is based on the understanding and the application of fundamental concepts in telecommunications and transmission of information C5. Selecting, installing, configuring and operating fixed or mobile telecommunications equipment. Equipping a site with usual telecommunications networks C6. Solving specific problems of the broadband communications networks: propagation in different environment, circuits and equipment for high frequencies (microwaves and optical).
Cross competences	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Development of professional skills in the field of Artificial Intelligence applied to Cybersecurity
7.2 Specific objectives	 Assimilation of the theoretical knowledge regarding the operation of cybersecurity systems\ Development of skills and abilities needed to design and implement of cybersecurity detection systems

8. Contents

<u> </u>	some me		
8	3.1 Lecture (syllabus)	Teaching methods	Notes
	I. Introduction to Cybersecurity.	ne Id ed n n It	
2	2. Artificial Intelligence Applications to Cybersecurity.	cipli t ar luire ire i men the tion:	⋖
.;	3. Artificial Intelligence algorithms for spam email and	disc tent acquacquals au lls au een ith t	ž
	phishing	he Son he skil agr	
4	Artificial Intelligence-based Intrusion Detection Systems	ex t	

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

5.	Generative Adversarial Networks and Cybersecurity
	applications
6.	Feature extraction in Intrusion Detection Systems
7.	DNS Exfiltration and DNS tunneling detection using
	Machine Learning ALgorithms

- 1. E. Tsukerman, "Machine Learning for Cybersecurity Cookbook", Packtpub, 2019.
- 2. A. Parisi. "Hands-on Artificial Intelligence for Cybersecurity: Implement smart AI systems for preventing cyber-attacks and detecting threats and network anomalies", Packtpub, 2019
- 3. A-G. Mari, D. Zinca, V. Dobrota. Development of a Machine-Learning Intrusion Detection System and Testing of Its Performance Using a Generative Adversarial Network, Sensors, Volume 23, issue 3, 2023

8.2	Laboratory	Teaching methods	Notes
1.	Google Colab platform and libraries used	nt.	
2.	Spam email detection using Machine Learning algorithms.	a e	
3.	Phising email detection using Artificial Intelligence	ding	
4.	Implementation of Snort rules for the implementation of	r ec	
	Intrusion Detection Systems	lato	
5.	The NSL-KDD dataset for Machine Learning Applications	emulator equipment	
6.	Implementation of Intrusion Detection Systems using	о Р	
	Machine Learning algorithms	a	
7.	Generative Adversarial Networks GAN in Intrusion)no	
	Detection Systems	, cl	
8.	DDoS detection using Machine Learning algorithms and the	tua	
	CICDDoS2019 dataset	<u> </u>	
9.	Feature extraction for Machine Learning-based Intrusion	<u>G</u>	
	Detection using Wireshark and Python	iskr	
10.	VPN traffic detection using Machine Learning and the	ا مر	
	ISCXVPN2016 dataset	ō ø	
11.	DNS Exfiltration using Machine Learning and the CIC-Bell-	ent	
	DNS-EXF-2021 dataset	Ë	
12.	Machine learning algorithms for cybersecurity in	m x	
	Azure/AWS	<u> </u>	
13.	Machine Learning application for detecting anomalies in	Practical experiments on physical, virtual, cloud and	
	Microsoft Windows Event Log.	Prac	N/A
14.	Machine Learning Pipeline for Cybersecurity applications	<u>.</u>	

Bibliography

- 1. E. Tsukerman, "Machine Learning for Cybersecurity Cookbook", Packtpub, 2019.
- 2. A. Parisi. "Hands-on Artificial Intelligence for Cybersecurity: Implement smart AI systems for preventing cyber-attacks and detecting threats and network anomalies", Packtpub, 2019
- 3. A-G. Mari, D. Zinca, V. Dobrota. Development of a Machine-Learning Intrusion Detection System and Testing of Its Performance Using a Generative Adversarial Network, Sensors, Volume 23, issue 3, 2023

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	Written exam including theory and problems (25 questions)	75%
10.5 Seminar/ Laboratory	I I NO IOVOI OT SCALIITOA KNOWIOAGO SNA SNIIITIOS	Multiple choice tests at the end of each lab	25%

10.6 Minimum standard of performance

Qualitative point of view

Minimal theoretical and practical knowledge:

- ✓ Understanding of the architecture, functionality, stack of a cybersecurity detection
- ✓ Ability to perform cybersecurity detection using AI algorithms

Minimal acquired competences:

- ✓ Ability to develop Artificial Intelligence Algorithms to detect a specific cybersecurity attack
- ✓ Ability to analyze and improve performance of Artificial Intelligence-based Cyberecurity applications

Quantitative point of view

- ✓ Minimal mean at the exam 5
- ✓ Final mark = 0.75 x Exam + 0.25 x Mean of the marks at the lab tests

Date of filling in: 19.06.2023	Responsible	Title First name SURNAME	Signature
	Course	Associate Professor Daniel ZINCA, Ph.D.	
	Applications	Associate Professor Daniel ZINCA, Ph.D.	

Date of approval in the Department of Communications 11.07.2023	Head of Communications Department Prof. Virgil DOBROTA, Ph.D.
Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology 12.07.2023	Dean Prof. Ovidiu POP, Ph.D.