

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca	
1.2 Escultu	Faculty of Electronics, Telecommunications and Information	
1.2 Faculty	Technology	
1.3 Department	Communications	
1.4 Field of study	Electronic Engineering, Telecommunications and Information	
1.4 Field of Study	Technologies	
1.5 Cycle of study	Master of Science	
	Telecommunications / Master	
1.6 Program of study / Qualification	Multimedia Technologies / Master	
1.0 Program of study / Qualification	Artificial Intelligence and Signal Processing in Electronics and	
	Telecommunications / Master	
1.7 Form of education	Full time	
1.8 Subject code	TC-E17.40	

2. Data about the subject

2.1 Subject name		Al-Bas	Al-Based Cybersecurity					
		Theore	etica	al are	ea			
		Metho	Methodological area					
-			ic area					
2.3 Course responsible			Associate Professor Daniel ZINCA, Ph.D.					
			Daniel.Zinca@com.utcluj.ro					
2.4 Teacher in charge with seminar /			Associate Professor Daniel ZINCA, Ph.D.					
laboratory / project			Daniel.Zinca@com.utcluj.ro					
2.5 Year of study 2 2.6 Semeste			er	1	2.7 Assessment	Е	2.8 Subject category	DA/DO

3. Estimated total time

3.1 Number of hours per week	3	of which:	3.2 course	1	3.3 laboratory	2
3.4 To Total hours in the curriculum	42	of which:	3.5 course	14	3.6 laboratory	28
Distribution of time						hours
Manual, lecture material and notes, b	ibliogr	raphy				20
Supplementary study in the library, online specialized platforms and in the field					12	
Preparation for seminars / laboratories, homework, reports, portfolios and essays					20	
Tutoring					3	
Exams and tests					3	
Other activities:						
3.7 Total hours of individual study 58						

5.7 Total hours of individual study	50
3.8 Total hours per semester	100
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 curriculum	N. A.
4.2 competence	N. A.

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	Laboratory, Cluj-Napoca

6. Specific competences

Professional competences	 and electronic technology C2. Applying the basic methods for the acquisition and processing of signals C3. Application of the basic knowledge, concepts and methods regarding the architecture of computer systems, microprocessors, microcontrollers, languages and programming techniques C4. Design, implementation and operation of data, voice, video and multimedia services. This is based on the understanding and the application of fundamental concepts in telecommunications and transmission of information C5. Selecting, installing, configuring and operating fixed or mobile telecommunications equipment. Equipping a site with usual telecommunications networks C6. Solving specific problems of the broadband communications networks: propagation in different environments, circuits and equipment for high frequencies (microwaves and optical). C7. Design, implementation and testing of systems and of various types of applications (signal processing, classification, regression, detection, natural language processing, shape recognition) based on machine learning or deep learning techniques
Cross competences	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Development of professional skills in the field of Artificial Intelligence applied to cybersecurity
7.2 Specific objectives	 Assimilation of the theoretical knowledge regarding the operation of cybersecurity systems Development of skills and abilities needed to design and implement of cybersecurity detection systems

8. Contents

		T	NULLI		
	Lecture (syllabus)	Teaching methods	Notes		
1.	Introduction to Cybersecurity.	the he			
2.	Artificial Intelligence Applications to Cybersecurity.	of t			
3.	Artificial Intelligence algorithms for spam email and phishing	tent and the in agreement tions of the mal			
4.	Artificial Intelligence-based Intrusion Detection Systems	ssio	N/A		
5.	Generative Adversarial Networks and Cybersecurity applications	The discipline content and the cquired skills are in agreement with the expectations of the professional	Z		
6.	Feature extraction in Intrusion Detection Systems	disc h th			
7.	DNS Exfiltration and DNS tunneling detection using Machine Learning ALgorithms	The disci acquired s with the			
Bib	liography:				
1.	E. Tsukerman, "Machine Learning for Cybersecurity Cookboo	k", Packtpub, 2019.			
2.	A. Parisi. "Hands-on Artificial Intelligence for Cybersecuri preventing cyber-attacks and detecting threats and network		•		
3.	A-G. Mari, D. Zinca, V. Dobrota. Development of a Machine-Le	earning Intrusion Detec	tion System and		
	Testing of Its Performance Using a Generative Adversarial Ne	twork, Sensors, Vol. 23	, issue 3, 2023		
8.2	Laboratory	Teaching methods	Notes		
1.	Google Colab platform and libraries used	ti ti			
2.	Spam email detection using Machine Learning algorithms.	L III			
3.	Phising email detection using Artificial Intelligence	nip.			
4.	Implementation of Snort rules for the implementation of	. be			
	Intrusion Detection Systems	atoi			
5.	The NSL-KDD dataset for Machine Learning Applications				
6.	Implementation of Intrusion Detection Systems using Machine Learning algorithms	and e			
7.	Generative Adversarial Networks GAN in Intrusion Detection Systems	cloud			
8.	DDoS detection using Machine Learning algorithms and the CICDDoS2019 dataset	virtual,			
9.	Feature extraction for Machine Learning-based Intrusion Detection using Wireshark and Python	sical, ,			
10.	VPN traffic detection using Machine Learning and the ISCXVPN2016 dataset	, Ad no			
11.	DNS Exfiltration using Machine Learning and the CIC-Bell- DNS-EXF-2021 dataset	nents			
12.	Machine learning algorithms for cybersecurity in Azure/AWS	Practical experiments on physical, virtual, cloud and emulator equipment.			
13.	Machine Learning application for detecting anomalies in Microsoft Windows Event Log.	actical	Д		
14.	Machine Learning Pipeline for Cybersecurity applications	E E	N/A		
Bibliography					
1. E. Tsukerman, "Machine Learning for Cybersecurity Cookbook", Packtpub, 2019.					
2.	A. Parisi. "Hands-on Artificial Intelligence for Cybersecuri		AI systems for		
	preventing cyber-attacks and detecting threats and network	• •	•		

3. A-G. Mari, D. Zinca, V. Dobrota. Development of a Machine-Learning Intrusion Detection System and Testing of Its Performance Using a Generative Adversarial Network, Sensors, Volume 23, issue 3, 2023

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment	10.3 Weight in			
		methods	the final grade			
10.4 Course	The level of acquired theoretical knowledge	Written exam				
10.4 Course		including theory and	75%			
	and practical skills	problems (25 questions)				
10.5 Seminar/		Multiple choice tests at				
Laboratory		Multiple choice tests at	25%			
		the end of each lab				
10.6 Minimum st	andard of performance					
Qualitative point	t of view					
Minimal theoretical and practical knowledge:						
✓ Understanding of the architecture, functionality, stack of a cybersecurity detection						
✓ Ability to perform cybersecurity detection using AI algorithms						
Minimal acquired competences:						
 ✓ Ability to develop Artificial Intelligence Algorithms to detect a specific cybersecurity attack 						
 ✓ Ability to analyze and improve performance of Artificial Intelligence-based Cybersecurity 						
applications						
Quantitative point of view						
✓ Minimal mean at the exam 5						
\checkmark Final mark = 0.75 x Exam + 0.25 x Mean of the marks at the lab tests						

Date of filling in:	Responsible	Title First name SURNAME	Signature
19.06.2024	Course	Associate Professor Daniel ZINCA, Ph.D.	
	Applications	Associate Professor Daniel ZINCA, Ph.D.	

Date of approval in the Council of the Communications Department 10.07.2024	Head of Communications Department Prof. Virgil DOBROTA, Ph.D.
Date of approval in the Council of the Faculty of Electronics, Telecommunications and Information Technology 11.07.2024	Dean Prof. Ovidiu POP, Ph.D.