

SYLLABUS

1. Data about the program of study

1.1	Higher Education Institute	Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information
		Technology
1.3	Department	Communications
1.4	Study domain	Electronics and Telecommunications Engineering
1.5	Study level	Master
1.6	Study program/ Qualification	Multimedia Technologies/ Telecommunications / Master
1.7	Type of education	IF (Full-time learning)
1.8	Discipline code	TM-E04.00/ TC-E16.50

2. Data about the subject

2.1	Discipline name					Relational Databases						
2.2	Subject area				Electronics and Telecommunications Engineering							
2.3	Responsible				Professor Petre G. POP, Ph.D.							
					petre.pop@com.utcluj.ro							
2.4	Titular				Professor Petre G. Pop, Ph.D.							
2.5	Year of study	1	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DA/DI	

3. Estimated total time

Year/	Subject name	No.	Course	App	licatio	ons	Course	App	olicati	ons	Indiv.		
Sem.		of					study	JAL	dits				
		weeks	[hours/ week]			[hours/ semester				0	Credits		
				S	L	Ρ		S	L	Ρ			0
I/1	Relational databases	14	2	0	1	0	28	0	14	0	58	100	4

3.1	Number of hours per week	3	3.2	course	2	3.3	applications	1
3.4	Total hours per curriculum	42	3.5	course	28	3.6	applications	14
Individual study								Hours
Manual, lecture material and notes, bibliography								18
Supplementary study in the library, online and in the field								18
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								12
Tutoring								7
Exams and tests								3
Other activities								
3.7 Total hours of individual study 58								
3.8 Total hours per semester 100								

3.8I otal hours per semester1003.9Number of credit points4

4. Pre-requisites (where appropriate)

4.1	Curriculum	C/C++ Programming, Object Oriented Programming
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	Video-projector, screen, whiteboard
5.2	For the applications	PCs with Internet access

6. Specific competences

	Theoretical	Mhot do the oticiont	(what do the student should know)	The students will know: - Knowledge of general databases concepts - Knowledge of relational data model - Database design - Standard SQL and Transact SQL Language - Database management in MS-SQL Server
Professional competences	Acquired skills	(What the student is	able to do)	 The students will be able to: Perform conceptual modelling Design, implement and populate relational databases (tables, constraints, data) Management of a database using MS SQL Server Write simple and advanced SQL queries Design and implement database objects: user defined functions, stored procedures, cursors, views, triggers Transactions management Write SQL applications that exploits a database
	Acquired abilities	(what equipment/	instruments/ soltwares the student is able to	The students will be able to: - To know and use the main features of a management system database - Test and debug SQL applications on databases
	Transversal	competences		CT3 Adapting to new technologies, professional and personal development through continuing education using electronic documentation and printed sources, in Romanian and in at least one international language (English). Competencies for analysis and synthesis and optimization systems thinking. Flexibility in thinking and ability to work with interdisciplinary concepts and tools.

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Develop skills in :
		- analysis, modeling, design of databases
		- database management
		- design and implement database SQL applications.
7.2	Specific objectives	Assimilation of theoretical and practical knowledge of basic and
		advanced design and database administration; use of SQL
		language to create database applications.

8. Contents

3.1. I	Lecture (syllabus)	Teaching methods	Notes
1	Database fundamentals: introduction, database management systems,		
	data models, entity-relationship model.	, Ľ	
2	The relational model: relations, representing relations through tables,	atic	
	integrity constraints, primary key, foreign key.	ent	σ
3	The relational model: maintaining referential integrity, transition from	res lua	oan
	conceptual model to the logical model, relation indexing.	n p eva	Å Å
4	SQL Language: introduction, SQL data types, SQL statements, SQL	ler /e (olac
	defined functions.	ativ	, t
5	SQL language: SELECT statement, creating queries.	, p	ecto
6	SQL Language: unions, intersections, differences, subqueries, joins.	, fo	Ξġ
7	The MS-SQL Server. T-SQL language: basic elements (data types,	tati fica udy	, p
	batches, variables), modified SQL statements.	sen iplij e st	tion
8	T-SQL language: modified SQL statements, parameterized queries,	Presentation, xemplificatior case study, fo	ntai
	temporary objects, cursors.	, е , е , е	sel
9	T-SQL language: stored procedures, user defined functions.	Presentation, heuristic conversation, exemplification, teaching exercise, case study, formative evaluation	Use of .ppt presentation, projector, blackboard
10	T-SQL language: triggers, views, error handling.	sat xer	opt
11	Relational database design: steps, conceptual design, logical design,	y er g e	of .p
	physical design, normal forms.	son hine	ee O
12	Transactions: introduction, abnormalities of data concurrent access,	tic o) Š
	transaction properties, SQL statements for transactions control, T-SQL	te	
	commands.	her	
13	An introduction to BI (Business Inteligence)		
14	Review. Preparation for the exam.		
.2. /	Applications (lab)	Teaching methods	Notes
1	Case study: identifying entities, attributes, domains, relationships.		
2	Transition from conceptual to relational model.	am	
	SQL language: create tables, populate tables with data, changing the	te	er
	structure of tables and updating data using SQL statements.	len ise,	u prit
	Assign project themes.	erc	irol
3	SQL language: simple queries, joins, nested queries, sub-queries.	ex be	e c env
4	T-SQL language: local variables, parameterized queries, temporary	ctic e	lg Mo
	tables, cursors.	dar	DB DB
	T-SQL language: user-defined functions, stored procedures.	Didactic and experimental proof, didactic exercise, team work	Working on the computer using a DBMS and a programming environment.
	T-SQL language: views, triggers.	Didac proof work	ork ogr
7	T-SQL language: transactions. Evaluation of projects.	σēš	≥ ≝ ¤

Bibliography

- 1. M.V. Mannino, Database Design, Application Development, & Administration, McGraw Hill, 2007.
- 2. P. Rob, C. Coronel, Database Systems: Design, Implementation and Management, Course Technology Ptr, 2006.
- 3. P. Leblanc, A. Jorgensen, J. Chinchilla, J. Segarra, A. Nelson, Microsoft SQL Server 2012 Bible, John Wiley & Sons, 2012.
- Stacia Varga, Denny Cherry, Joseph D'Antoni, Introducing Microsoft SQL Server 2016 Mission-Critical Applications, Deeper Insights, Hyperscale Cloud, Microsoft Press, 2016
 On-line references
- 1. Laboratory support materials available on laboratory site (https://helios.utcluj.ro/learn2code)

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired skills will be needed in the following possible COR occupations: electronics engineer, telecommunications engineer, system and computer design engineer, or new occupations proposed to be included in COR (sales support engineer, developer of multimedia applications, network operating engineer, test engineer, project manager, traffic engineer, communications system consultant).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final
						grade
Course		Written test (grid test with 30 questions; one query involving multiple tables) (T=110). Scientific papers (S=110)		Written test (T=50%) + activity during the semester (S=50%) E = T + S		E = 50%
Applications		Project developed during the semester in the laboratory (P = 110)		Project defended at the end of semester		P = 50%
10.4 Minimu	m stan	dard of performance				
application ty	/pe: N	is calculated as average of ma = (E + P) / 2. The condition for e higher than or equal to 5 (five	obtair		-	-

Date of filling in	Course responsible
01.02.2020	Professor
	Petre G. POP

Teachers in charge of applications Professor Petre G. POP

Date of approval in the department 01.10.2020 Head of Communications Department Professor Virgil DOBROTA, PhD