

SYLLABUS

	1. Study Program					
1.1	Higher Education Institute	Technical University of Cluj-Napoca				
1.2	Faculty	Electronics, Telecommunications and Information				
		Technology				
1.3	Department	Communications				
1.4	Study domain	Electronics and Telecommunications Engineering				
1.5	Study level	Master				
1.6	Study program/ Qualification	Multimedia Technologies/ Telecommunications/				
		Master				
1.7	Type of education	IF (Full-time learning)				
1.8	Discipline code	TM-E08.00/ TC11.20				

2. Discipline

2.1	Discipline name				Advanced Computer Architectures						
2.2	Subject area			Electronics and Telecommunications Engineering							
2.3	Responsible				Assistant Professor Ovidiu Buza, Ph.D.						
						Ovi	diu.Buza@	com.utcluj	.ro		
2.4	Titular				Assistant Professor Ovidiu Buza, Ph.D.						
2.5	Year of study	Ι	2.6	Semester	2	2.7	Evaluation	Exam	2.8	Type of discipline	DA/DI

3. Total estimated time

Year/ Sem	ear/ Discipline name N em w		Course	Applications		Course	Applications		Indiv. study	OTAL	ECTS		
			[hours/week]		[hours/week]			F	ш				
			С	S	L	Ρ		S	L	Ρ			
I/2	Advanced Computer Architectures	14	2	0	1	0	28	0	14	0	58	100	4

3.1	Number of hours per week	3	3.2	course	2	3.3	applications	1
3.4Total hours per curriculum423.5course283.6applications								14
Individual study								
Study based on manuals, course materials, references and notes								
Supplementary documentation in libraries, electronic platforms and on field 1								10
Preparation of seminars/laboratories, homeworks, essays, portfolios								10
Tutorial work 6							8	
Assesments							4	
Other activities 12							12	
3.7	Total hours of individual study	,	58					
20	Total having man assessed		400					

3.9 ECTS 4	3.8	Total hours per semester	100
	3.9	ECTS	4

4. Prerequisites (if necessary)

4.1	Curriculum	
4.2	Competences	

5. Requisites (if necessary)

5.1	Course	Video-projector, screen, whiteboard
5.2	Applications	Local network with Internet access, Visual C++, PVM, Condor

6. Specific competences acquired

		The students will acquire knowledge about:
Professional competences	Theoretical knowledge (What do the student should know)	 basic concepts of computer architecture; methods for computer performance evaluation; advanced techniques in designing computer central units; architecture of computer systems: principles, current and perspective developments; high performance architectures; parallel and distributed architectures; operating systems and programming standards for parallel architectures
	Acquired skills (What the student is able to do)	The students will be able to: - implement programs in Visual C under Windows 32-bit; - use programming techniques based on events and messages; - use structures and specific classes for programming under Windows 32-bit; - set up and programming a parallel virtual machine; - implement various logical topologies on a parallel virtual machine; - realise of multitask programs on the parallel virtual machine; - work with and implement concurrent and parallel programming techniques; - implement parallel algorithms; - work with grid computing techniques
	Acquired abilities (what equipment/ instruments/ softwares the student is able to handle)	The students will be able to use: - Visual C under Windows 32-bit; - parallel programming environments like PVM and Condor
Transversal – competences		CT3 Adapting to new technologies, professional and personal development through continuing education using electronic documentation and printed sources, in Romanian and in at least one international language (English). Competencies for analysis and synthesis and optimization systems thinking. Flexibility in thinking and ability to work with interdisciplinary concepts and tools.

7. Discipline objectives (based on the grid of specific competences acquired)

7.1	General objective	Acquiring knowledge in the field of computer architectures
7.2	Specific objectives	 acquiring basic and specific knowledge of computer architecture; knowledge of the current and future principles in computer systems design; knowledge of high-performance, parallel and distributed computer architectures; acquiring knowledge about operating systems and programming standards for parallel architectures; knowing how to realise and work with a parallel virtual machine; acquiring basic knowledge about Grid computing

8. Contents

1Introduction. History; virtual machine; langu computer architectures; processor families; per methods2Computer basic architecture. The central unit, m controllers and components, input/ output device: Advanced techniques for central unit architecture pipelined superscalar architecture; NetBurst arch processors family4High performance architectures. Vector processor processors; RISC architectures; SPARC architect memory systems. Types of memory; memory per indicators; multiple memory units; associative me memory; memory modules design6Interconnection networks. Direct networks; indire switching; packet switching; information routing te transputers; hypercubes; distributed systems: architectures.	ages; taxonomy of formance evaluation emory, buses, s design. The itecture; Pentium rs; MIMD and SIMD tures erformance mory; cache; virtual ct networks; circuit- echniques ssor architecture;	sions			
2 Computer basic architecture. The central unit, m controllers and components, input/ output device 3 Advanced techniques for central unit architecture pipelined superscalar architecture; NetBurst arch processors family 4 High performance architectures. Vector processor family 4 Memory Systems. Types of memory; memory perindicators; multiple memory units; associative memory; memory memory memory memory indicators; multiple memory units; associative memory; memory modules design 6 Interconnection networks. Direct networks; indire switching; packet switching; information routing terms 7 transputers; hypercubes; distributed systems: or indicators; multiple	emory, buses, s design. The itecture; Pentium rs; MIMD and SIMD tures erformance mory; cache; virtual ct networks; circuit- echniques ssor architecture;	sions			
 Advanced techniques for central unit architecture pipelined superscalar architecture; NetBurst arch processors family High performance architectures. Vector processor processors; RISC architectures; SPARC architectures Memory Systems. Types of memory; memory perindicators; multiple memory units; associative memory; memory modules design Interconnection networks. Direct networks; indire switching; packet switching; information routing terms Parallel and distributed architectures. Multiproce 	design. The itecture; Pentium rs; MIMD and SIMD tures erformance mory; cache; virtual ct networks; circuit- echniques ssor architecture;	sions			
 High performance architectures. Vector processor processors; RISC architectures; SPARC architect Memory Systems. Types of memory; memory per indicators; multiple memory units; associative me memory; memory modules design Interconnection networks. Direct networks; indire switching; packet switching; information routing te Parallel and distributed architectures. Multiproce transputers; hypercubes; distributed systems: ario 	rs; MIMD and SIMD tures erformance mory; cache; virtual ct networks; circuit- echniques ssor architecture;	sions			
 Memory Systems. Types of memory; memory period indicators; multiple memory units; associative memory; memory modules design Interconnection networks. Direct networks; indire switching; packet switching; information routing to Parallel and distributed architectures. Multiproce transputers; hypercubes; distributed systems: arise 	erformance mory; cache; virtual ct networks; circuit- echniques ssor architecture;	sions			
 Interconnection networks. Direct networks; indire switching; packet switching; information routing te Parallel and distributed architectures. Multiproce transputers; hypercubes; distributed systems: and 	ct networks; circuit- echniques ssor architecture;	sions			
 Parallel and distributed architectures. Multiproce transputers; hypercubes; distributed systems: and 	ssor architecture;				
OCCAM specification	d architecture;	, discus	rojector		
8 SIMD systems. Array processors, vectorial processystems	essors, systolic	ation	deopi		
9 Multicomputers. Organization; message passing systems; COW multicomputers	; massively parallel	esent	, Ż		
10 Multiprocessor systems. Structure, consistency r memory, network connections for multiprocessor	nodels for shared	Pr			
11 Multiprocessors with uniform memory access (UN 11 symmetric multiprocessors; UMA multiprocessors switches	Multiprocessors with uniform memory access (UMA). Specifications; symmetric multiprocessors; UMA multiprocessors based on grid switches				
12 Multiprocessors with non-uniform memory access 12 Specifications; NC_NUMA multiprocessors; CC_ multiprocessors; COMA multiprocessors	s (NUMA). NUMA				
 Operating systems and programming techniques concurrency exploitation, detection of parallelism synchronization mechanisms, examples 	for multiprocessors; nside programs,				
14 Standards and programming environments for pa 14 MPI standard, PVM environment, OCCAM langua agents	rallel architectures. age, intelligent				
8.2. Applications (laboratory work)		Teaching methods	Obser- vations		
1 The defining elements of 32-bit programming		moulouo	Valionio		
2 Structures and classes used in Windows 32-bit p	rogramming				
3 Introduction to PVM; building a parallel virtual ma	chine	Its			
4 Functions for message passing and task control		ner			
5 Functions for processes groups in PVM		Prin			
6 Implementation of Cannon's algorithm using PVM	1 library (I)	xpé	ork		
7 Implementation of Cannon's algorithm using PVM	1 library (II)	ω	ž		
8 Introduction to grid computing		ing	ne		
9 Programs execution in Condor (I)		Ĩ	ЪС С		
10 Programs execution in Condor (II)		arr	—		
11 Workflows in Condor		ogr			
12 Other examples of parallel algorithms		Ргс			
13 Applications on parallel architectures					
14 Laboratory test					

1. J. L. Hennessy, D. A. Patterson, *Computer Architecture, Fifth Edition: A Quantitative Approach* (The Morgan Kaufmann Series in Computer Architecture and Design), Elsevier, 2012, ISBN-10: 012383872X

- 2. G. Lerman, L. Rudolph, *Parallel Evolution of Parallel Processors* (Evaluation in Education and Human Services), Springer, 2013, ISBN-13: 978-1461362371
- 3. D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors, Second Edition: A Hands-on Approach, Elsevier, 2012, ISBN-10: 0124159923
- 4. Shane Cook , *CUDA Programming: A Developer's Guide to Parallel Computing with GPUs* (Applications of GPU Computing Series), Elsevier, 2013, ISBN-10: 0124159338
- 5. C. Lin, L. Snyder, *Principles of Parallel Programming*, Addison-Wesley, 2008, ISBN-13: 978-0321487902
- 6. G. Sebestyen, Informatică industrială, Ed. Albastră, Cluj-Napoca, 2006
- 7. Z.F.Baruch, Structura sistemelor de calcul. Editura Albastră, Cluj-Napoca, 2005
- 8. B.B.Brey, Intel 32-Bit Microprocessor: 80386, 80486 & Pentium, Prentice Hall; 7thEd 2005
- 9. D.Gorgan, G. Sebestyen, Proiectarea calculatoarelor, Ed. Albastră, Cluj-Napoca, 2005
- 10. D.A.Patterson, J.L.Hennessy, *Computer Organization and Design: The Hardware/ Software Interface*, 3rd Edition, Morgan Kaufmann Publishers, August 2004
- 11. D.E. Comer, Essentials of Computer Architecture, Prentice Hall; US edition, August 2004

9. Discipline content corroborated with the expectations of the epistemic community representatives, associations, professional and related program employers

Acquired skills will be needed in the following possible COR occupations: electronics engineer, telecommunications engineer, system and computer design engineer, or new occupations proposed to be included in COR (network operating engineer, test engineer, traffic engineer, communications system consultant).

10. Assessment

Type of	10.1	Evaluation criteria	10.2	Evaluation method	10.3	The weight of the			
activity						final grade			
Course		Exam (E = 110)		Written test		50%			
		Scientific essay (S = 110)		Scientific essay presented by each student		25%			
Applicatio ns		Laboratory test (L = 1 10)		Written test at the end of semester		25%			
10.4 Minimum performance standard									
The final grade (N) is calculated as follows:									
N = 0,5E+0,25L+0,25S									
The condition or equal to	The condition for obtaining the ECTS credits is that all components of the final grade to be higher than or equal to 5 (five).								

Date Titular 24.06.2018 Assistant Professor Ovidiu Buza, Ph.D.

Responsible Assistant Professor Ovidiu Buza, Ph.D.

Date of approval 24.06.2018

Head of Department Professor Virgil Dobrota, Ph.D.