

SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca				
1.2	Fooulty	Electronics, Telecommunications and Information				
	Faculty	Technology				
1.3	Department	Communications				
1.4 Field of study Electronics and Telecommunications Engineer						
1.5	Cycle of study	Master				
1.6	Program of study/Qualification	Multimedia Technologies/ Telecommunications/ Master				
1.7	Form of education	IF (Full-time learning)				
1.8	Subject code	TM-E14.00/ TC-E17.10				

2. Data about the subject

2.1	Subject name				Biometric Security Systems						
2.2	Subject area			Electronics and Telecommunications Engineering							
2.3	Course responsible/lecturer				Associate Professor Simina EMERICH, PhD						
2.4	4 Teachers in charge of applications					Associate Professor Simina EMERICH, PhD					
2.5	Year of study		2.6	Semester	3	2.7	Assessment	Exam	2.8	Subject category DA/DI	

3. Estimated total time

Year/	Subject name	No.	Course	urse Applications Course		Applications Indiv.			Indiv.				
Sem.		of							study	-AL	dits		
		weeks	[hours/ week]		[hours/ semester]]	0	Credits			
				S	L	Ρ		S	L	Ρ			0
II/1	Fundamental Electronic Circuits	14	2		1		28		14		58	100	4

3.1	Number of hours per week	3	3.2	of which, course	2	3.3	applications	1	
3.4	Total hours in the curriculum	42	3.5	of which, course	28	3.6	applications	14	
								Hours	
Individual study									
Manual, lecture material and notes, bibliography									
Supplementary study in the library, online and in the field									
Preparation for seminars/laboratory works, homework, reports, portfolios, essays									
Tutor	ing							3	
Exan	ns and tests							3	
Othe	r activities							4	
3.7	Total hours of individual study		58						

3.8Total hours per semester1003.9Number of credit points4

4. Pre-requisites (where appropriate)

4.1	Curriculum	-
4.2	Competence	Signal and image processing, mathematics, programming

Universitatea Tehnică din Cluj Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației S⁻r. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.ettl.utcluj.ro

5. Requirements (where appropriate)

5.1	For the course	Cluj-Napoca
5.2	For the applications	Cluj-Napoca

6. Specific competences

ces	Theoretical knowledge (What do the student should know)	 The students will know: Generalities about - identity management; economic and social impact of biometrics; area of applications, advantages/ disadvantages of biometric systems. Methods and principles used for biometric identification of individuals. Scientific foundations regarded of the main biometric technologies (include fingerprint, face, iris, retina, hand shape, DNA, voice, signature, gait, etc.) The principles of multimodal biometric systems. 					
Professional competences	Acquired skills (What the student is able to do)	 The students will be able to: Handles advanced concepts of pattern recognition and their applications to solving real life problems such as biometric identification. Design and implement the main modules of a biometric system. Evaluate the performance of a biometric system 					
۵.	Acquired abilities (what equipment/ instruments/ software the student is able to handle)	 The students will be able to use: Software tools (Matlab) for biometric authentication purposes Hardware tools in order to acquire biometric traits 					
Cross competences	CT3 Adapting to new technologies, professional and personal development through continuing education using electronic documentation and printed sources, in Romanian and in at least one international language (English). Competencies for analysis and synthesis and optimization systems thinking. Flexibility in thinking and ability to work with interdisciplinary concepts and tools.						

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Developing the competences regarding the use, analysis and design of a biometric system.						
7.2	Specific objectives	 Recognizing and understanding basic concepts specific to biometric identification Acquire theoretical and practical knowledge concerning the physiological and behavioral biometric technologies (face, iris, fingerprint, hand geometry, signature, voice, etc) Acquire competences for development of algorithms and applications using specific software tools 						

8. Contents

.1.	_ecture (syllabus)	Teaching methods	Notes		
1	Introduction to biometrics. Identity management. Brief history of biometrics. Applications of biometric systems.	luation			
2	Sensors and biometric devices. The main modules of a biometric system. Performance Evaluation	ative eva			
3	Physiological biometric traits I: fingerprint, face, hand geometry. History. Used sensors. Features extraction techniques. Public databases.	udy, forme			
4	Physiological biometric traits II: iris, retina, ear, DNA. History. Used sensors. Features extraction techniques. Public databases.	, case st			
5	Behavioral biometric traits: voice, typing dynamics, walking, on-line signature. Used sensors. Features extraction techniques. Public databases.	ig exercise	blackboard		
6	Infrared radiation in biometrics. Absorption of radiation in tissues. Choosing the area of interest. Identifying the infrared vein model.	on, , teachir	ojector,		
7	Unimodal biometric systems - advantages, disadvantages and limits Multimodal biometric systems, modes of operation.	Presentation, esentation, te	Use of .ppt presentation, projector, blackboard		
8	Fusion levels in multibiometric systems (sensor, feature, score and decision level).	Pre em prese			
9	Biometric system based on dynamic signature. Diagram of a signature verification system. Devices and Methods of Signature Acquisition (Digitization Table). Database.	tion, probl	ttion, probl	tion, proble	Jse of .ppt
10	Dynamic (on-line) signature pattern recognition methods	plifica			
11	Types of measurements scales: nominal, ordinal, interval and ratio. Presenting different arguments in favor of ordinal measurement based applications.	Presentation, sation, exemplification, teaching exercise, case study, formative evaluation			
12	Techniques proposed for extracting and modeling dynamic signature features. From Fourier Analysis to Time-Frequency Analysis. Wavelet Transform. The TESPAR / TESPAR DZ encoding method.	heuristic conversa			
13	Integration of presented methods to implement a unimodal system, based on dynamic signature.	heuristi			
	Recapitulation. Preparation for the final exam.				

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

8.2.	Applications (lab)	Teaching methods	Notes						
1	Dynamic signature signals acquisition (coordinates, pressure, azimuth, etc.) with GENIUS GP4500 digital tablet.	team	oards,						
2	Matlab implementation of TESPAR DZ encoding method. Descriptors extraction (duration, local minimum, and amplitude) from signature specific waveforms.	c exercise,	experimental boards, board						
3	Removing noise from input data. Determining the I and II derivatives to obtain additional information such as speed and acceleration on both directions (x and y).	oof, didactic rk	0						
4	Design and implement a biometric system based on dynamic (on-line) signature. Feature vector extraction.	experimental proof, work	laboratory instrumentation, ∈ computers, magnetic						
5	Performing experiments on different databases (public and acquired in the laboratory).	experim	atory ins compu						
6	Users authentication, considering both random and skilled forgeries.	c and	labor						
7	Results analysis and interpretation. Confusion matrix. ROC curves. Error rates (FAR and FRR)	Didactic	Use of						

Bibliography

- 1. S.Z. Li (Editor), Anil K. Jain (Editorial Advisor), Encyclopedia of Biometrics, 2014, Springer
- 2. A. K. Jain, A. Ross, K. Nandakumar, Introduction to Biometrics, Springer, ISBN 978-0-387-77325-4
- 3. J.R. Vacca, *Biometric Technologies and Verification Systems*, 2007, Elsevier, ISBN: 978-0-7506-7967-1
- 4. A.K. Jain, A.A. Ross, K. Nandakumar, *Handbook of Multibiometrics*, 2006 Springer Science + Business Media, LLC, ISBN-13: 978-0-387-22296-7, New York, SUA\
- 5. S. Prabhakar, S. Pankanti, A.K. Jain, *"Biometric Recognition: Security and Privacy Concerns"*, IEEE Security & Privacy, pp 33-42, 2003.
- 6. D. Yeung, H. Chang et al., "SVC2004: First International Signature Verification Competition", Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, 15-17 July 2004.
- 7. S. Emerich, E. Lupu, *Biometric Security Systems* (in Romanian), U.T.PRESS, ISBN 978-606-737-153-6, 2016
 - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

10.Evalu	uation	IS				
Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final
						grade
Course		The level of acquired		 Summative evaluation 		
		theoretical knowledge and		written exam (theory		- E, max 10 pts.
		practical skills		and problems)		60%
Applications		Each student will select an		Practical test		- L, max. 10 pts.
		individual subject. The project				40%
		must contain an applicative				
		part and a scientific				
		documentation (minimum 5				
		pages)				
		The level of acquired abilities				
10.4 Minimur	n stan	dard of performance				
		L≥5 and E≥4	and	0.6E+0.4L ≥ 4.5		

Date of filling in 01.07.2020

Course responsible Associate Professor Simina EMERICH, PhD Teachers in charge of applications Associate Professor Simina EMERICH, PhD

Date of approval in the department 1.01.2020 Head of Communications Department Professor Virgil DOBROTA, PhD