

SYLLABUS

1. Study Program

1.1	Higher Education Institute	Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information
		Technology
1.3	Department	Communications
1.4	Study domain	Electronics and Telecommunications Engineering
1.5	Study level	Master of Science
1.6	Study program/ Qualification	Multimedia Technologies/ Telecommunications/
		Master
1.7	Type of education	Full time
1.8	Discipline code	TM-E17.10/ TC-E14.00

2. Discipline

2.1	Discipline name	Communication Technologies for Intelligent Transportation							
		Systems							
2.2	Subject area	Electronics and Telecommunications Engineering							
2.3	Responsible	Assistant Professor Zsuzsanna Suta, Ph.D.							
		Zsuzsanna.Suta@com.utcluj.ro							
2.4	Titular	Assistant Professor Zsuzsanna Suta, Ph.D.							
2.5	Year of study II 2.6 Semester 3	2.7 Evaluation Exam 2.8 Type of discipline DS/DO							

3. Total estimated time

Year/ Sem	Discipline name	No. of weeks	Course	Appl	icatio	ns	Course	Арр	olicati	ons	Indiv. studv	AL	လု
o o i iii		Weente	[hou	rs/we	ek]		[houi	rs/we	ek]	otady	τοτ	ECT
			С	S	L	Ρ		S	L	Ρ			
II/3	SPEWCTS	14	2	0	1	0	28	0	14	0	58	100	4

3.1 Number of hours	s per week	3	3.2	course	2	3.3	applications	1
3.4 Total hours per	curriculum	42	3.5	course	28	3.6	applications	14
Individual study H								Hours
Study based on mai	nuals, course m	nateria	ls, refer	rences and no	otes			14
Supplementary documentation in libraries, electronic platforms and on field								20
Preparation of semi	nars/laboratorie	es, hor	nework	s, essays, por	tfolios			10
Tutorial work								7
Assesments								3
Other activities								4
3.7 Total hours of	f individual stud	y	58					

3.8	Total hours per semester	100
3.9	ECTS	4

4. Prerequisites (if necessary)

4.1	Curriculum	Modulation techniques; Data transmissions; 3G, 4G and 50	G				
		mobile communications; Wireless systems					
4.2	Competences	Matlab, Simulink or Labview programming; utilization of	of				
		measurement equipment					

5. Requisites (if necessary)

5.1	Course	 Video-projector, screen, whiteboard.
5.2	Applications	PCs with Internet access, oscilloscopes, signal generators,
		wireless (WiFi and 3G) interfaces, SDR devices

	6. Specific competences acquired							
Professional competences	Theoretical knowledge (What do the student should know)	 The students will know: the basic concepts of intelligent transportation systems. the communication technologies used by railway, aeronautical, maritime and vehicular connectivity systems. the basic aspects of vehicle-to-vehicle, vehicle-to-infrastructure and vehicle-to-everything communications. the basic aspects related to connected mobility. the basic aspects related to vehicular communications security. the basic aspects related to the integration of intelligent transportation systems into smart cities. 						
	Acquired skills (What the student is able to do)	 The students will be able to: develop solutions for intelligent transportation systems. assess the quality of services offered by the connectivity systems. develop solutions for vehicular connectivity systems. assess the performance of various connectivity solutions. develop solutions for connected mobility. develop solutions for smart cities related to intelligent transportation systems. 						
	Acquired abilities (what equipment/ instruments/ softwares the student is able to handle)	 The students will be able to use: equipment/tools for measurement of connectivity performance. Matlab/Simulink for fast prototyping. radio channel emulators. Simulation/emulation tools for wireless systems. SDR devices for different applications. 						
	Transversal competences	Adapting to new technologies, professional and personal development through continuing education using electronic documentation and printed sources, in Romanian and in at least one international language (English). Competencies for analysis and synthesis and optimization systems thinking. Flexibility in thinking and ability to work with interdisciplinary concepts and tools.						

7. Discipline objectives (based on the grid of specific competences acquired)

7.1	General objective	Knowledge of intelligent transportation systems. Overview of connectivity solutions used for ITS. Knowledge of vehicular communication solutions.
7.2	Specific objectives	Study of railway, aeronautical, maritime and vehicular communication systems. Study of V2V and V2I solutions. Study of security issues in vehicular communications.

8. Contents

8.1. 0	Course (titles)	Teaching methods	Remarks
1	Overview		
2	Intelligent transportation systems. General aspects	<i>(</i> 0	
3	Railway communication systems	Suc	
4	Aeronautical communication systems	ssic	L
5	Maritime communication systems	cri	stol
6	Vehicular communication systems	dis	jec
7	Connected mobility	, Ľ	brc
8	Vehicle-to-vehicle and vehicle-to-infrastructure communications	Itio	eo
9	Vehicle-to-everything communications	nte	Vid
10	In-vehicle communications systems	se	_
11	Security in vehicular communication systems	Pre	
12	Ubiquitous access to services		
13	Intelligent transportation systems and smart cities		

14	Follow-up, questions and answers		
8.2	. Applications (laboratory work)	Teaching methods	Remarks
1	Mobile communications system emulator. Performance study.		
2	Communication system implementation using SDR and Matlab.		, щ н
3	Air traffic monitoring solution implementation using SDR and Matlab.	ls, Its	tor SD atc
4	Communication systems implementation using SDR and GNU radio.	ior	ula ca be,
5	Radio communications system performance study using SDR and GNU radio.	mulat	, simu eless oscop al gei
6	The study of radio channels, coding and modulation schemes using SDR si GNU radio.	ex Si	PC wir∈ oscill sign
7	Study of a seamless connectivity system architecture for public transport		
Re	ferences:	•	
1.	Vasile Bota, Transmisiuni de date, Ediția a II-a, Editura Risoprint, Cluj Napoc	ca, 2004. (ad	cesible
	at: TUCN library, laboratory).		
2.	Graham D. Lees, William G. Williamson, Handbook for Marine Radio Comm	unication 5E	, Informa,
	2009, ISBN: 978-1843117971		
3.	Wei Song, Weihua Zhuang, Interworking of Wireless LANs and Cellular Netv	vorks, Spring	ger Briefs
	in Computer Science, Springer, 2012, ISBN: 978-1-4614-4378-0 (accesible a	at: TUCN lib	rary,
	laboratory).		
4.	Dale Stacey, Aeronautical Radio Communication Systems and Networks, Jo 2008, ISBN: 9780470018590	hn Wiley & S	Sons, Ltd,
5.	Emilie Masson, Marion Berbineau, Broadband Wireless Communications for	Railway Ap	plications:
	For Onboard Internet Access and Other Applications, Springer International	Publishing, 2	2017,
	ISBN: 978-3-319-47202-7		
1.	4. Christoph Sommer, Falko Dressler, Vehicular Networking, Cambridge U	niversity Pro	ess, 2014,
_	ISBN: 978-1107046719		
6.	Kan Zheng, Lin Zhang, Wei Xiang, Wenbo Wang, Heterogeneous Vehicul	ar Networks	s, Springer
-	International Publishing, 2016, ISBN: 9783319256207	o <i>"</i>	
1.	Tao Zhang, Luca Deigrossi, Venicle Safety Communications: Protocols,	Security, an	a Privacy,
0	John Wiley & Johns, Ltd, 2012 IJBN: 9/8-1-118-132/2-2	tomo Dro	home and
ö.	Aleksanuel Slaukowski, Wiesław Palliuła, Intelligent Transportation Syst	rem s - Prop rem	Jerns and
0	Lukas Neckermann, Smart Cities, Smart Mobility, Z010, ISBN: 978-3-319-191	00-0 / M/a Liva /	and Work
9.	Troubadour Publishing Ltd 2017 ISBN: 078-1788030540	vve Live a	and work,
<u> </u>			

9. Discipline content corroborated with the expectations of the epistemic community representatives, associations, professional and related program employers

Acquired skills will be needed in the following possible COR occupations: electronics engineer, telecommunications engineer, system and computer design engineer, or new occupations proposed to be included in COR (sales support engineer, developer of multimedia applications, network operating engineer, test engineer, project manager, traffic engineer, communications system consultant).

Type of	10.1	Evaluation criteria	10.2	Evaluation method	10.3	The weight of		
activity						the final grade		
Course		Written test with several		Written test		T = 50%		
		theoretical questions and						
		2-3 problems (E = 110)						
Applications		Project developed during						
		the semester in the		Project defended at		P = 30%		
		laboratory (P = 1 10)		the end of semester				
		Written test with						
		questions related to the		Written test at the end		Ta = 20%		
		practical applications (Ta		of the semester				
		= 1 10)						
10.4 Minimum performance standard								
The final grade (N) is calculated as the weighted sum of marks obtained in the evaluation, as								
presented ab	presented above: $N = 0.5 T + 0.3 P + 0.2 Ta$. The condition for obtaining the ECTS credits is: T > 5							

10. Assessment

Date Titular 07.02.2020 Assistant Professor Zsuzsanna SUTA, Ph.D. Responsible Assistant Professor Zsuzsanna SUTA, Ph.D.

Date of approval 1.10.2020

Head of Department Professor Virgil DOBROTA, Ph.D.